
AD-AS95 717 PATTERN ANALYSIS AND RECOGNITION CORP ROME NY F/B 9/2
ADVANCED QUERY FACZLIYY.(Ul
NOV So C P MAN P30602-79-C-OlIN

UNCLASSIFIED PAR-80-53 RADC-TR-80-356 N

EhEEEEE

mE~h~hE~hhhh

RADC-TR80-356
Final Technical Report
November 1980

ADVANCED QUERY FACILITY
Pattern Analysis and Recognition Corporation

Dr. Clinton P. Mah

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
MAR 3 1981

LuROME AIR DEVELOPMENT CENTERD
Air Force Systems Command
Griffiss Air Force Base, New York 13441

/ :1W

-, o

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-80-356 has been reviewed and is approved for publication.

APPROVED: II.
ZBIGNIEW L. PANKOWICZ
Project Engineer

APPROVED:

OWEN R. LAWTER, Colonel, USAF
Chief, Intelligence & Reconnaissance Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removea from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(IRD7) Griffiss AFB NY 13441. This will assist .us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THI~S PAGE (Wh.n1,, r10

SPRF RMIN OR NZTIOCNMEANDTATIRES PAG 0 PO RA ELMNTR CT AS

II.CONROLINGOFICENAM AN ADRES - 42- EFREO MPLTIN FORM

0 R AFB NYV 13441IO NO EIIN' AAO NUMBER g

0~ ___ _ 406-_______________
14~~~~~~~ MOIOI"ONYNM AOESI Ifn ,,,,CnotlgOfc I.SCRT LS.(fIi -ol

SRame IJNCLASSF&EW
IS..- DELSIFCTONDWGRDN

ccD

AAroED foRY pubLITY release ditibto nicnlimite

DC. Proe nin eer: Mbgne L.,60 7ano-iz-01T

Qutetin Anlserin Mehdogyio omputaiona LiA OR NITicUBES

Natra LangagQuey P rocessing2

The rNotdcmnscmuaierslsoY 1345\-t R& efrtcnss

Romg i Development ofenative query faclit NoQvemfr intraciv

exlitto of4OI ENYNM AESi diffrnlfratte Cotrge dataases ISEUIYCAQS. (ftis aeot-
ware pakgUitnedfrCLeASettonadt SIIoEraioa

SECURITY - DCLASSIFICATION FOWNAG GRA,,,D*aIG dN/IH DL

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whim Date Entered)

Item 20 (Cont'd)

;;Pof target data structures, correlation of data from various databases,

and generation of informative report displays for users lacking
experience with computers. AQF operates through an intermediate
relational data model, thus insuring independence of the organization
of target databases and their respective database management systems.
Software package consists of a natural language query processor;
a general target database access module; an automatic report generator;
grammar and dictionary entry software; database mapping table software;
diagnostic and validation tools, and a basic grammar for English query
language. The package is written in FORTRAN for portability and run-
nable on small scale processors like DEC PDP 11/70 and PDP 11/45 under
RSX-llM. AQF is also Implementable on a micro-processor. Some com-
mercially available CRT terminals can accommodate a 16-bit DEC LSI-11/03
micro-processor, up to 128K bytes of static MOS memory, serial inter-
face, and a dual floppy-disk drive at a total price under $12,000.
RSX-11M can run on such a micro-processor system, thus insuring immedi-

ate implementability of AQF in the present FORTRAN version on the
system.

Accession For

DTIC TAB 0
Unannounced 0
Justificatio ,

Distribution/ . -' , - -

Availability C0. . -.

Dist Spccial

D

UNCLASSIFIED

SECURITY CLASSIFICATION OF 1- PAGE'When Date Entred)

TABLE OF CONTENTS

Section Pae

1. Introduction 1-2

1.1. AQE Description 1-2

1.2. Background 1-10

2. Concepts 2-1

2.1. Natural Language. 2-1

2.2. Relational Hierarchies. 2-2

2.3. Intermediate Queries. 2-4

2.14. Target Data Base Mapping. 2-7

2.5. Access Paths. 2-8

2.6. Semantic Dependence 2-9

3. Organization 3-1

3.1. Query Language Processor. 3-1

3.2. Reference Resolution. 3-3

3.3. Access Path Generation. 3-5

3.4. Data Base Searching 3-8

3.5. Report Generation 3-11

3.6. Sorting. 3-14

4. Comparisons. 4-1

4.1. Menu-Driven Systems 4-1

4.2. Formal Language Systems 4-3

4.3. Natural Language Systems. 4-4

5. Setting Up. 5-1

5.1. Data Modeling 5-2

5.2. Vocabulary 5-4

j.3. Special Access Procedures 5-4

5.4. Target Data Types 5-S

5.5. Mandatory Fields. 5-S

6. Further Work. 6-1

6.1. Improvements. 6-1

TABLE OF CONTENTS (Cont.)

Sect ion Page

6.2. Extensions 6-3

7. Conclusion 7-1

7.1. Capabilities 7-1

7.2. User Development 7-3

7.3. Evaluation 7-4

7.4. Prospects. 7-5

References R-1

EVALUATION

The objective of this effort consists in development of an advanced
query facility (AQF) for experimentation and testing, in order to assess
the utility of natural language access to on-line target databases in
the operational environment.

Although AQF is conceptually similar to a few other query systems with
natural language front-end, it differs from them in the following important
respects: high degree of portability (AOF software is written in FORTRAN);
operational economy (implementability on processors as small as flEC PDP-
11/45); target database independence (AOF maKes no aprioristic assumption
about database structure), and multiple-database access capability that
requires only a minimal additional programming. Furthermore, according
to the Report, operation of AQF requires no special software other than
a FORTRAN compiler at the level of DEC FORTRAN-IV-PLUS and a linker with
overlaying for operation on processors with small address spaces.

It is also worth noting that AQF can be implemented at a low cost on a
desk-top microcomputer, or on any off-the-shelf CRT terminal that can
accommodate requisite microprocessing hardware components, such as those
described in Section 7.2, USER DEVELOPMENT, pp 7-3 - 7-4.

According to the Report, "the main advantage of AQF is its applicability
to existing data" and "the capability of generating information displays
correlating data from different data bases." (cf. 7.1.2 Multiple nata
Bases, p. 7-2)

NIEW L. PANKOWICZ
Project Engineer

iii

1. INTRODUCTION

The Adaptive Query Facility (AQF) is a portable collection of data base

access software developed by PAR Corporation under contract F30602-79-C-0174

for the Rome Air Development Center. The facility was designed primarily to

address the problem of flexible, but transparent, user access to one or more

existing online formatted data bases. AQF operates through an intermediate

relational data model for data base independence and supports natural language

queries. It is implemented in FORTRAN and can run on medium-scale processors

like the DEC PDP-11/45 and PDP-11/70.

This report describes the various work carried out under the AQF

contract. It also describes what AQF consists of, how the components of AQF

operate and interact, and where AQF might be applied most effectively.

Details of algorithms and their implementations are not described; these can

be found in the AQT project final and in the AQF program documentation. A

separate report, "The AQF User's Manual (System Manager's Implementation

Guide)" describes in detail how to configure an AQF system for a specific

target data base. In Section 4 of this report, there is a comparison of AQF

with other data base access approaches.

1.1 AQF DESCRIPTION

AQF comprises a set of FORTRAN subroutines that may be incorporated into

an online information system to provide an interactive query capability or

that may be built into a stand-alone user interface to a target data base. In

its full configuration, AQF is organized into five separate passes, patterned

after the structure of a compiler for a high-level programming language.

The overall design of AQF aims at providing a simple, but flexible query

capability oriented toward users with little computer training. There is no

intent to demonstrate any sort of machine intelligence in AQF; but the ability

of the different passes of AQF to support each other allows AQF to provide

1-1

capabilities usually associated with more complex natural language systems.

The handling of linguistic reference in AQF is an example of this (see Section

2.2).

1.1.1 Design

Each of the five passes in full AQF performs a distinct function:

Pass 0 is a table-driven query language processor that rewrites a

user query into an intermediate query referring to an internal
logical model for a target data base. User queries may be in
natural language, depending on the grammar driving the query

processor.

Pass I is a linguistic reference resolution module for intermediate

queries relative to an internal logical data model. This

handles references that cannot be handled conveniently in the

grammar for Pass 0. It distinguishes between anaphoric

reference and co-reference.

Pass 2 converts a resolved intermediate query into a target data base

access sequence. This process is table-driven to allow AQF to

be independent of the target data bases. Some optimization is

carried out.

Pass 3 interprets target data base access sequences to search for and

retrieve data. It creates lists of retrieved items that may

be referenced in following queries (co-reference).

Pass 4 formats lists of retrieved items for display. Information not

actually specified in a data access sequence may be included
when needed for effective interpretation of displays. This is

table-driven.

Pass 5 actually puts up an AQF output display, with an optional

sorting of output lines by fields.

The five passes are modular. Pass 3 is in a sense the heart of AQF.

Depending on the circumstances, the other passes can be replaced or dropped

1-2

entirely.

In addition to the five passes, AQF includes various support programs to

create and to maintain the various tables driving the passes. All AQF tables

are in binary form, but they are generated from ASCII text files. The

programs for doing this range in complexity from a large grammar entry program

to programs that convert ASCII straight into binary. All support programs are

written in FORTRAN, like the rest of AQF.

1.1.2 Services

In its full configuration, AQF offers a variety of services to help a

user in the analysis of stored data. To begin with, AQF logical data models

lets the user see the structure of the target data base as a more simple

hierarchy of relations with conventions to make names correspond to natural

language usage. AQF itself can automatically translate references to an AQF

logical model into references to target data bases. Furthermore, the AQF

query processor combined with an English grammar allows even logical data

models to become transparent by automatically translating input queries into

intermediate queries. This also eleminates the need to learn any formal query

language syntax.

The AQF search and retrieval algorithm together with the AQF report

generator allows for correlation of data from different data bases, even

though they might have disparate structures. This provides a capability

similar to the JOIN operator of relational data base systems, but completely

transparent to user. AQF in effect can automatically construct data base

relations in response to an information request.

AQF can be applied to any target data base with only a little additional

programming. Such programming is unavoidable because AQF cannot anticipate

all possible data types and all possible data access methods, but this is

isolated to a small number of submodules called by the various passes of AQF.

1-3

Use of AQF requires no special software other than a FORTRAN compiler at the

level of DEC FORTRAN-IV-PLUS and a linker with overlaying when running on

processors with small address spaces.

1.1.3 Examples

The following sample of AQF usage is drawn from a stand alone

demonstration system having a Soviet fighter data base implemented with

FORTRAN files. This illustrates what AQF can do from the user's standpoint.

What AQF will actually do in an operational application will depend on the

query language vocabulary defined and the degree that the report generation

options are employed.

1-4

. -- _ [ll . .. 4

" -R iIa -II. i..

$ RUN ORYD

S A 0 F DEMONSTRATION SYSTEM 8
5 VERSION 00-06-080 8

QRY>TELL HE ABOUT AIRCRAFT.

AIRCRAFT(?)
(1)

@I AIRCRAFT
THI1S IS A SOVIET FIGHTER AIRCRAFT DATA WASE DERIVED FROM
UNCLASSIFIED PUBLICATIONS. IT DESCRIDES CRENSP FUSEL-AG.S,
WINGSt ENGINES, ARNfIS AND PERFORMANCE,

ORY>LIST F1OHTERS ORDERED BY NATO NAM.

AIRCRAFT(?7) [ROLE: :-AW)F{GA'{S}{IB}{/TX/A}]
IDFNTIFICATION(?)1/NATO/ NAME:41'S

ROLE. /NATO/ NAME

F/B FARMER MIS-t9
F/)3 FARMER-C MIG- 19SF
F/B FARHER-D IG-19PF
F/IR FARMEFR-fl MirB-J9PH
FGA/T FISHBED MIG-21
FGA/T FISHBED-C HIG-21F
FGA/T FTSHJ3ED-0 MIG-21PF
FSA/) FISHNED-1 flIG-21PFA
FGA/T FlSJHDED-J MIG-21PFOA
FGA/l FISIHBED-J 01G-21MF
FGA/T FTSHBED-% HIG-21MF
FCA/T FISHRED-L 910-21MF
AbiF F [' HPOT 59J-9
Ft/A FLOGGER MIG-23
rs/A LOGGFR-8 HIG-23B
ES/A FLOCCERC HIG-23U
F/b FRESCO MIG-17

1-5

GRY>WAAT ARE THE DIMENSIONS OF THE FARMER?

AIRCRAFT IDENTIFICATION(V 1)fGTO NAME:sFARMER
DIMFNSION(?)

(,)

HIG-19 FARMER ItNz 48.88 NT= 13.19 US= 29.54

QRY>HOU MUCH DOES IT V1E6N?

SAIRCRAFT EIGHT(?)[..:tJ
C,)

VEIGHT

MIG-19 FARMER 19180

ORY>PRINT THE ARMAMENT OF THE FARMER,

AIRCRAFT IDENTIFICATION0(!)NATO NW:=VARNfW.RJ
*ARMA1NT(?)

C,)

Air-r19 FARNFR ICF'NS I AA MISSILE AIKALI
3 CAWION

sCfim 4 AS ROCKET
2 POPI
3 CANNON

$CFON -1 AS ROCKET
2 BOMB
3 CANO

1-6

_____ __ -4

ORY>WIO FAST CAN IT FLY?

*AIRCRAFT PERFORMANCE
PrRFOMHANCE('[SPEED1:41

SPFED
~~- - . . . AC- --- FT

AIGl-19 FARNER 0.50 9000
0060 70000
0,75 60000
0.97 50000
1.24 40000
1.32 30000
1.09 20000
0.84 10000
0.66 0

QRY>THE FRESCO?

*AIRCRAFT IJ1ENIFICATION(?)1I CNATO NAII:=FRESCO]

SPEED

MIG-17 FRFqCD 0.39 40000
0,48 30000
0.62 20000
0.80 10000
0.92 0

1-7

GRY>\GIVE NEIGHTS OF FIGHTERS WI1TH COMBDAT RADIUS OVE(R 500.

AIRCRAFT(ROLE -,tAU}F{GA{S}{/b}{/1 }{/A}J
*PFRFORMOACEEUCOKDAT/ RADIUS>500)
*WEIGH()..:=83
(1)

ROLE /COMBDAT/ RADIUS
S----Hi1

VS/A 111G-2301 FLOGGER--C 600
VS/A 111G-23B FLOGGER-D 600
FS/A MIS6-23 FLOGGER 60
rGA/T 11I1-21PFHA FTSHD-J 1183
FCIA/T 1IG-21PFK FISHJSEI-F 1183
FGA/T Mll;-*21PF FISHBED-D 1183
VGA/l HIG-21F VISI4DED-L 1283
FGA/T HIC--21MF VISHBED-I(1183
FGA/f, M018-21HF FIS)IKfl-. 1183
FGA/T IG-21F FISHRED-C 1183
FGA/l 11IG-21 FISIBED 1183

ROLE WEIGHT

FS/A 1IIG--23U FLOGGER-C 281000
FS/A MIG6-23D FLOGGER-0 28000
rS/A M1116-23 FLOGGER 28000
FGA/T 111G-21PFM1 VJSHBED-.I 27750
FGA/T 11IG--21PF1 FISHRlFD--V 27750
FGA/T IIIG-21PF FISHBED-JJ 27750
FGA/T MIG-2lil4F FISHRED-L 27750
FGA/r HIG-211F FISHBED-K 27750
FGA/T MIG--2111F FISHBED-J 27750
FGA/f ?IIG-21F FISHBEII-C 27750
FGiA/r M16-21 FISHRED 27750

ORY/^Z

BYE...

1-8

1.2 BACKGROUND

Online data bases allow for fast responses to information requests and

make the data handling capabilities of computers available to users. The

actual usefulness of online data bases, however, will depend a great deal on

how well a user and a system can communicate. In many situations, this may be

difficult; for example, it might require the user to learn a private access

language and to be able to designate items of data in a particular way.

Typically this language will have a logical form, and the data will be

organized according to global systems constraints -- making the data base

opaque to a user who is neither a logician or a data base expert. A system

also may have problems communicating information back to the user in a way

that is readily interpreted.

An additional complication is the frequent existence of multiple data

bases, which for historical reasons were developed separately with their own

private access languages and data base organizations. This multiplies the

difficulties for a user and makes it unlikely that the user will be able to

make connections between data stored i:n different places. How to display such

data in a way that makes sense to a user is also not obvious, especially if

the connections are not a simple direct one-to-one relationship.

One important approach to improving communication between user and system

is the relational data model [3]. This approach defines data base access in

terms of an abstract model of stored data, where details not of interest to

the user are masked. Because there is much less to talk about, a private

access language can become simpler, and the designat-in of data items is much

easier. The problem of communication, however, has not gone away. In the

typical relational system, the nonexpert user still faces a private access

language in logical form and finds data organized primary according global

systems constraints. Furthermore, there is still the question of how to

impose a relational model effectively on existing data bases with different

kinds of structures.

1-9

1.2.1 Histor

The development of AQF began with a basic observation about the

designation of data in REL [L7] system, an online interactive data analysis

system based on a binary relational model. In a proposed application of REL

to a Soviet aircraft data base, the names of relations tended to be rather

long and to contain many words in common; for example, "AIRCRAFT DESIGNATION",

"AIRCRAFT TYPE", "(AIRCRAFT) FUSELAGE LENGTH". This suggested that the

relation names might be factored out, yielding a hierarchical structure that

was generalized into the notion of a hierarchy of n-ary relations, each

designated by a single word (see Section 2.3).

The use of a relational hierarchy as a logical model made it fairly easy

to designate data in a query language because the factoring out of names

simplified the construction of a dictionary. This also made it easier to

construct a query language based on English syntax, since the semantics of the

query language would be limited to aspects of a relational hierarchy; that is,

a query has to map into references to relations, fields, functions, or values,

no matter how complicated it might be.

The major question of feasibility in this general scheme was whether

there existed a reason for automatically mapping a relational hierarchy

logical model into existing target data bases of arbitrary structure. This

matter was addressed in the Advanced Query Techniques (AQT) effort [5], in

which the basic algorithms now in Pass 1,2,3, and 4 of AQF were developed and

demonstrated in a system running with a Soviet fighter data base. This showed

that it was possible on a DEC PDP-11/70 to have a query facility in which the

structure of target data bases (as well as logical data models) could be made

almost transparent.

The Advanced Query Facility ef2'ort grew directly from AQT. Its goal was

to develop a portable data base access facility out of the AQT demonstration

system. This involved the extensions and improvements of passes 1 through 4,

1-10

__

the implementation of pass 0 in FORTRAN, and the addition of pass 5, a sort

module. The overall structure of AQF was laid out to keep target data base

dependence to a minimum. Everything now has been brought together into one

software package available for distribution on a small (600 ft.) reel of

magnetic tape. Two AQF demonstration systems have been implemented, one with

the AQT Soviet fighter data base and the other with a U.S. airfield data

iP}.,lmented with DEC RPL-11 data base software.

Pt-.lated c2ysterrs

AQF is similar in concept to a number of other systems currently under

developpiont: PLANES !8 1, LADDER [41, and others. These represent direct

applhcation of natural language processing techniques to data base access

where the system developer has no control over the content of the data base.

The content is determined by a user with a specific end in mind; and the

system is require, both to accommodate initially given data and to adapt to

any npw Iata as user requirements change.

This is jiffprent from laboratory natural language systems (e.g. SHRDLU

wh're h o pianned carabilities of a system usually determine the choice

Of a data*La . Cuch a system tends to be so highly tailored to its data base

that it ,rinot be readily applied to a new one. It serves primarily as a

v-hi(ole for investigating and demonstrating new natural language techniques;

it is not intended as a practical tool for actual users.

AQF and related systems have the opposite emphasis. These are supposed

to help users to overcome real information problems and need not involve any

new natural language techniques at all (although this almost always is still

so). Tne difference in emphasis means that simplicity, speed, reliability,

and understandability of a system are at least as important as its technical

capabilities, if not more so.

1-11

AQF differs from other natural language systems for applications in three

key ways:

6 It is a self-contained package written in FORTRAN and developed to

run on medium-scale minicomputers.

t It makes no assumption about the structure of a target data base or
about the data base manage system; multiple data bases present no

difficulty.

b It incorporates extensive report generation capabilities as well as
query processing capabilities.

AQF in short is designed to be applicable in almost any situation where data

base access might be a problem. It does not require any particular hardware

or software to run.

1.2.3 Target Applications

Although AQF can run on large mainframe processors, it is most

advantageous on mini-computers. It was originally designed to serve users

such as intelligence analysts needing a dedicated processor to work with

sensitive data. Typically this rules out large mainframes, and with smaller

machines, the user has to work with data base systems having only primitive

interactive query facilities, if any at all. Given in addition that users

would tend to be inexperienced with computers, bringing a natural language

query capability to smaller machines seems a good idea.

Natural language data base access is helpful when a user has the problem

of correlating data from different places in order to perform a task. This

kind of situation is difficult for a menu-driven or similar fixed-query system

to handle because these imply fixed displays of information that are not

always presenting exactly what the user wants. Accessing more than one data

base at a time is a special case of this correlation problem.

1-12

4

The AQF software package aims at supporting users, expert or not, who

want to manipulate online data in various ways to discover possible

connections. Its natural query language front end, its general retrieval

mechanism, and its report generation capabilities sent to provide flexible

access when needed for analysis of data from different sources. It also

eliminates the need for any special user interface on data base systems.

1-13

... -I

2. CONCEPT"

The key concepts underlying AQF have already been introduced informally

in Section I. This section will define these more rigorously in order to

provide a theoretical basis for subsequent discussion. Discussion will be in

the following ,rier: (! natural language, (2) intermediate queries, (3)

relation ,l hierarchies, (4) table-driven data base mapping, (5) access paths,

and (K semanti' dependonce of data.

?.1 NATURAL LAN(GUAGE

Nc one yet knows how to program a computer to understand language in all

the w;ys that person can: reading a magazine, carrying on a conversation,

listening to a radio commercial, and so forth. ".is does not mean, however,

that natural language is impractical for computers. in any practical computer

appli-ntion, there is never any question of completely emulating human

language behavior; rather the need is that of identifying the kinds of

transa,-tions betwetn person and machine that have to take place and setting up

convntions t- m-ke this process as painless as possible.

Natural language provides a particularly good source of potential

conventions for transactions because it represents a highly evolved tool for

communito to and is something that people car use skillfully without

cor.sc ;, I ff'rt. To build a natural language computer interface, the

strptigy > :traghtforw:rd: first, make no query language conventions that

conflt.t w!.th natiral language; and second, incorporate at least counterparts

t.o -1 as.:. rf, -rern1. i onventions of natural language, including the

con t ,- ,' r,. a-',mrnt ot ' long 1inuistic expressions by short ones. The

first ",'" the ', stra', y ivoids atkin(a user unlearn things; the second

:r'roust if.,. thr most dsvelopmentally primitive part of natural

,'lrig, 4a g .:.. lb -into i que ry 'anguage.

1-1

For a data access domain of discourse, not much more than this is

actually required for natural language. In the case of AQF, the semantics of a

query language is established by a relational hierarchy logical model;

anything meaningful must refer to some aspect of that model: relations,

fields, values, or functions. Syntax is relatively unimportant here, for no

matter how complex all meaningful syntactic relationships expressed in any

query have to be interpretable ultimately in terms of the hierarchical

structure of the logical model.

This enormous simplification of the natural language problem of course

entails a certain cost; "how" and "why" queries cannot be handled

conveniently, for example. Nevertheless, the query language that can be

defined is adequate enough for general data access, and there are certainly

implementational advantages to simplicity. A query language with relational

hierarchy semantics is in any event more natural than one based on predicate

calculus disguised to look like English by writing quantifiers and connectives

out as words.

2.2 RELATIONAL HIERARCHIES

A relational hierarchy can be thought of as a special kind of relational

data structure. Formally, it is simply a collection of the usual sorts of n-

ary set-theoretic relations defined over various classes of data objects with

a partial ordering imposed on the relations. The partial ordering, is defined

linguistically as follows:

1. eanh relation has a name consisting of a single common noun;

e.g. AIRCRAFT.

2. if a field is defined for a relation, then standard linguistic

usage permits the relation name to precede the name of field as

a modifer; e.g. AIRCRAFT NATO NAME for the field NATO NAME.

3. any completely ordered sequence of relation names is

linguistically acceptable; e.g. AIRCRAFT, AIRCRAFT ENGINE
IDENTIFICATION, ENGINE IDENTIFICATION.

2-2

___ 1*

4. each field is as high up in the relational hierarchy as

possible, consistent with the sense of the field name and

linguistic usage implied by the preceding requirements.

Here is a simple example of a relational hierarchy.

AIRCRAFT

. . . IDENTIFICATION [NATO NAME, SERVICE NAME]

• . . WING

. . .DIMENSION 'SPAN]

. . . FUSELAGE

. . . DIMENSION [LENGTH]

• ENGINE [TYPE]

I . . IDENTIFICATION [MANUFACTURER, DESIGNATION]

The point of a relational hierarchy is to take advantage of the many

degrees of freedom possible in the definition of a relational data model so as

to define a model conducive to natural language. The form of relational

hierarchy represents in fact an attempt to make the designation of data

elements in a model correspond closely to linguistic usage regarding words

modifying other words. Data dependence in the model in some sense is made to

parallel iinguis' c dependence in a natural query language.

Although this approach may seem simplistic as far as natural language

systems usuay go, it actually works out fairly well in the specialized data

base accesi' appliation that AQF is intended for. PF does not really need to

have anyt.ing mort, elaborate, and from the standpoint of designing for maximum

2-5

portability, it should not. Relational hierarchies allow AQF to get by with

relatively little front end query processing.

2.3 INTERMEDIATE QUERIES

The first part of AQF query processing is to translate an incoming

natural language query string into a formal intermediate query string

referring to a relational hierarchy logical model of a target data base. This

appro'.ch has three important advantages: it improves the modularity of the

query processor, the intermediate forms make it easier to deal with contextual

relationships between queries, and the intermediate query string can be

displayed to show a user whether an input query was processed correctly.

An intermediate query formally consists of a series of clauses having the

following form

xxx yyy zzz [AAA := TT, BBB :> UU]

where xxx yyy zzz is a sequence of consecutive relation names and the brackets

enclose an optional list of conditions on values as associated with fields of

the rightmost relation. A given clause may be dependent or independent

according to its contextual aspects.

A dependent clause is one that can be interpreted only in the context of

the preceding clause; in the intermediate query syntax, a dependent clause is

marked by a "." character at the start of the clause. The sequence of

relation names in dependent clauses need not start from the top level of a

relational hierarchy. An independent clause in contrast can be interpreted

absolutely without regard to context, and its sequence of relation names must

start from the top level of a relational hierarchy.

2-4

An intermediate query nsistsIof a sequence of clauses, with the first

clause either independent or dependent and following clauses all dependent.

The relation name sequence must be extendable to the top of a hierarchy in a

way consistent with preceding clauses up to the first independent clause; the

sequence for a dependent claus must start with a relation name that is either

the same as one occurring in the sequence for a preceding clause or

immediately below one with the respect to the relation hierarchy.

individual relation names in a sequence for a query clause may be marked

according to information to b#returned if the conditions expressed in a query
6

can b- satisfied in a target data base. Three markings are defined for AQF:

"(?)" to request retrieval of field values, (Y/N?) for a simple yes or no

response, and "(#?)" for a count of matching instances. in addition, a

relation name can be marked 4iith a count specifier of the form (n!), where n

is number when a specific ccnt of matching instances is required or is

omitted entirely to indicate specificity of reference without a definite

count.

An intermediate query is terminated by one of three different possible

markers: "(.)" denoting simple termination, "(&)" denoting termination with

expectation of a following intermediate query related by a logical AND, and

"()" denoting termination with a following query related by logical OR

following. These pertain to the possible combination of results meeting

different query conditions to make a single information display.

4

Here are some examples of intermediate queries based on the relational

hierarchy example in Section 2.2.

A

2 -5

AIRCRAFT (?) IDENTIFICATION [NATO NAME
(.)

"GIVE NATO NAMES OF AIRCRAFT."

AIRCRAFT (#?)

WING DIMENSION [SPAN :> 10 M]

"HOW MANY AIRCRAFT WITH WING SPAN OVER 10 METERS?"

* DIMENSION [SPAN :> 12 M]
(.)
"HOW MANY OVER 12 METERS?"

AIRCRAFT (Y/N?)

• WING DIMENSION [SPAN :> 10 M]

(M)
* FUSELAGE DIMENSION [LENGTH :> 15 M](.)
"ARE ANY AIRCRAFT WITH WING SPAN OVER 10 METERS OR
LENGTH OVER 15 METERS?"

The "*" value is a special "wildcard" that matches any defined value for a

field. By convention, values for all fields marked by "*" will be returned

when a query clause is marked with a "(?)"

Intermediate queries do not actually constitute a semantic formalism for

AQF in the sense of unambiguously specifying meaning. They are not yet

completely resolved contextually; this job is left for later stages of AQF so

as to lighten the task of the AQF parser, which must translate natural

language into intermediate query forms. The natural language portion of AQF

could also be dropped entirely, witn the user either entering intermediate

queries directly or possibly employing some kind of interface software to

generate them indirectly.

2-6

2.4 TARGET DATA BASE MAPPING

This is the heart of AQF. The capability of maj 'ig a relational

hierarchy onto a target data base of arbitrary structure makes it possible for

query language processing to be developed without regard to any data base and

in the end provides AQF with its adaptability. The AQF mapping is a table-

driven procedure based on establishing connections between fields in a

relational hierarchy and data items in a target data base. This provides a

way of translating semantic dependence between designated fields of a query

into actual data access linkages in the target data >s

In a sense, AQF is an expert on data base structure. Its mapping tables

and related access procedures constitute an overall description of a target

data base as needed for general interactive user access. Altogether, there

are three main tables, two main linkage procedures, and a special table and

procedure for indexed access.

o A field correspondence table associates a named field of a relation

with a data item of a particular record type within a target data base.

This includes information on data type and units of measurement.

o An intra-relational link table describes the varicus target data access

linkages that tie together the fields associated with a given relation.

This handles the case of a relation encompassing data from several

target data base record types connected by 1-to-i linkages.

o An inter-relational link table describes the various target data access

linKages corresponding to the hierarchical connections between the

relations of a logical data model.

o The "first record" and "multiple" records procedures in AQF define

operationally the types of target data access linkages referenced in

AQF mapping tables. The first record procedure follows a link to get

2-7

the first record instance pointed to; the multiple records procedure

gets succeeding records after the first in case of a 1-to-many link.

Linkage procedures have to be tailored to a given target data base

because it is impossible to anticipate all possible linkages in AQF.

o For indexed access, an indexed fields table specifies the fields that

are listed in an index, and an associated procedure contains code for

using the various available indexes. Indexed access is treated

separately because it only applies only to the initial part of access

to a target data base.

The AQF mapping tables and procedures in general will not include all

possible linkages in a target data base. This is in part because working from

a relational hierarchy makes only 1-to-i and 1-to-many linkages of interest in

the target data base. It is also usually desirable for security and other

reasons to limit the access of any given interactive data base user with

logical data models map onto the portion of a data base needed by the user and

no more.

2.5 ACCESS PATHS

An AQF access path is a branching sequence of target data references,

each except the first being related to the preceding by a single target data

base access linkage. Access paths are represented internally by AQF as tree

structures. They are used by the AQF search and retrieval module in

traversing a target data base to find those data fields for which search

conditions must be checked or for which values are requested in a query.

AQF sees a target data base as a discrete two-coordinate "access space",

with the first coordinate being a target data base record type and the second

being a logical mode relation through which data was referred to originally

(the retention of the identity of relations is needed for report generation

later.) The idea is to have each segment of an AQF access path show how to get

2-8

l ,;A "

from one point of the access space to another.

An access path is constructed from an intermediate query by the following

procedure applied to each field specified in the query:

o Look up the field in the field correspondence table to get a target

record type for it. This locates the field specification within access

space.

o Use the inter-relational link table to move through access space in a

direction that corresponds to moving up in the relational hierarchy.

o If the preceding fails, use the intra-relational table to move to

another point in access space and try again.

o Stop upon reaching a point in access space which can be reached by a

top-level access method, usually sequential or indexed. If this is

impossible , then the mapping tables are in error.

The access sequences for all fields in an intermediate query are finally

merged to get a single access path.

2.6 SEMANTIC DEPENDENCE

In order to generate a user interpretable display of retrieved data, AQF

has to keep track of the semantic dependence of data items, which is usually

not apparent from looking at a target data base alone. Such dependence is

defined by a data access path, in which is implicit the relational hierarchy

serving as the logical model for user access. The AQF usage of access paths

makes fields occurring along a path depend on all fields preceding it on the

path.

2-9

" i~ilnif ~ i '' '161 I_ _I_ _1il[. ..__ _ _.._ _ - 4 1 -*i

This dependence is the basis for AQF report generation. The idea is toJthink of the fields specified along a branch of an access path as a kind of

composed data relation, not unlike a new relation formed from other relations

through set-theoretic operations like JOIN, INTERSECTION, and RESTRICTION.

The AQF report generator simply produces a display of each of the composed

relations defined by an access path, taking the designated field values from

retrieved record instances for the path.

The basic AQF display procedure is augmented by what is here termed as

"mandatory key fields." These are fields that are important to show when

displaying a composed relation, but that are not always explicitly requested

in a query. AQF is set up to include these key fields automatically, working

from information in an AQF mandatory fields table. This table associates

implicitly requested fields with particular points in an access space so that

these fields can be inserted automatically into an access path where it

crosses those points.

Typically the mandatory fields table includes the primary keys for a

target data base since these by definition serve to identify items of stored

target data. In a relational hierarchy model, those key fields will tend to

be in the upper part of a hierarchy because most other data fields will be

semantically dependent on them and thus be below them. Special non-data

fields required only for marking off displays can also go into the mandatory

fields table; these would contain no information, serving only to highlight

certain groupings of retrieved data.

2-10

3. ORGANIZATION

This section will look at AQF from an implementational standpoint. The

overall structure of AQF is like that of a multi-pass compiler for a

programming language. The multi-pass approach works out well when integrating

many diverse algorithms and it is a necessity where limited address space

prevents having everything in main memory. The discussion of AQF here will be

split up along these lines as well.

3.1 QUERY LANGUAGE PROCESSOR

Because the AQF Query Language processor is table-driven, it

theoretically can be set up to handle any kind of query language; but for the

most part, it is tuned for subsets of English. The query language processor

in Pass 0 has three principal components: a word stemmer, a sentence parser,

and a rewriting module.

3.1.1 Lexical Analyzer

To avoid a query language dictionary having to list all simple

inflectional variants of every word, AQF incorporates a -s, -ed, and -ing

suffix remover to get the root forms of words. This currently recognizes over

400 patterns of word endings and is able to restore final "e" on words where

it has been dropped and to undouble final consonants where necessary.

In addition to the stemmer, AQF lexical analysis also includes special

procedures for handling numbers, unknown words, and multi-word lexical items.

The treatment of unknown words in query language processing is particularly

important because it is often inconvenient to include all the possible values

for a data field in a dictionary for the language; the basic AQF query

language grammar provides several mechanisms for interpreting unknown words as

literal values when they are associated with field names in a query.

3-1

-',.1.2 Parsing

The AQF parser is essentially the same as that described in the Advanced

Query Techniques final report [5]. It is a table-driven bottom-up parser

built up on the framework of Vaughan Pratt's implementation of the Cocke-

Kasami-Younger algorithm for parsing context-free languages [6]. The parser

has been enhanced for natural language application with the inclusion of

syntactic and semantic features, which are extensions in the direction of Van

Wijngaarten grammars; these allow the syntax of a query to be expressed with a

much smaller number of rules than in the case of a straight context-free

grammar.

The parser also makes special provision for right and left recursion in

parsing. Phrases that are absorbed into a larger phrase of the exact same

type by application of a right-recursive rule are eliminated from further

consideration, saving the effort of following any more syntactic consequences

for them. Left-recursion is recognized in a similar fashion, but only for the

case of rules relating the root form of a word and its inflectional endings.

The AQF parser is written entirely in FORTRAN, a reimplementation of the

assembly language parser used in the AQT demonstration system. It is actually

smaller in its overall space requirement than the AQT version because the use

of external dictionary files in AQF allows for smaller internal tables. The

parser is organized to be able to run easily within the address space of

processors like the DEC PDP-11/45.

3.1.3 Text Editor Semantics

The AQF parser produces a syntactic analysis of a query, describing the

rules of grammar applying to the query and giving the definitions of the words

in the query. This information is then used to rewrite the input query into

an intermediate query form. The procedures for doing this are incorporated in

the rules of grammar used for analysis and the definitions for words.

3-2

In AQF, the semantics of any query constituent is defined as a procedure
expressed in a speciil language for string manipulation. This language is

best described as a block-structured text-editor language, consisting of the

basic operations associated with an interactive text editor, like INSERT,

FIND, or DELETE, combined with structured programming control structures, like

IF-THEN-ELSE or DO-WHILE. The language implements recursion with both global

and local variables and provides for dynamic allocation of storage.

The AQF semantic language for query processing also provides for shared

access to local variables defined in procedures. These allow semantic

procedures to have some control over the execution of other semantic

procedures, letting the rewriting process for intermediate queries be

context-sensitive even though parsing remains on a context-tree basis.

3.2 1LEFERENCE RESOLUTION

For some natural language systems, reference tends to be an extremely

difficult problem. In AQF, the situation is simpler because the use of

relational hierarchies to define the meaning of queries severely limits the

possibilities for reference. The resolution of query references in AQF is

done in two stages: aspects involving only contextual substitution of words

are handled almost entirely in the rewriting component of the query processor;

more complex aspects are handled on Pass 1, which takes immediate queries as

input.

3.2.1 Anaphoric Reference and Coreference

Reference resolution in AQF consists of associating all references in an

intermediate query with specific elements of a relational hierarchy. This

involv-s two tasks in Pass 1: first, the intermediate query string from Pass

O must be converted into a tree structure where any semantic dependence

implicit in the ordering of clauses is made explicit; second, any reference to

precedinp query must be clarified as either co-reference or anaphoric

3-3

reference.

For AQF, co-reference means that a query is referring to the same things

that a previous query referred to. This is handled by restricting a search to

what was retrieved before. Anaphoric reference, on the other hand, makes no

such restriction; it requires rather that parts of a preceding query be copied

over to the current query in order to fill it out. For example, co-reference

with two intermediate queries

AIRCRAFT IDENTIFICATION [NATO NAME := FOXBAT]

.WING DIMENSION (?) [SPAN

(.)

AIRCRAFT FUSELAGE DIMENSION (?) [LENGTH

(.)

as opposed to anaphoric reference

AIRCRAFT IDENTIFICATION [NATO NAME: = FOXBAT]

WING DIMENSION (?) [SPAN: =

(.)

AIRCRAFT IDENTIFICATION [NATO NAME: = FLOGGER]

(.)

In the anaphoric case, AQF must retrieve a completely different set of target

data base records in order to respond to the query.

Pass I of AQF determines the type of reference intended in a query by

comparing its field references with those of the resolved tree form of the

3-4

%t, I*. 1. y. so wohe#-r any va, :ut -js~o : i t w t. h a f ielId has

"C l'-r.,n , . aSoSun.- i Ulr. j re i u utry s supt-rs.-df(Ino ri somf WiY.

?I Is M, m- ;i Qx t rt y S .a. M ' om pirt i t o r- fr.- ne .n mc- nat ur a liriuh f#e

syst,-ms, bull s,,t mn-, to work" wt-rI unough fo)r irnitl-ri ,d A Y 1 a i i to ris.

Mo St ra t 11r -inmguage systems (Iev ute7 mu- h ff fo r t t o hanrid 'i ri C query

sequences of tne fol lowing sort:

What is the length of' th~e Poxhit?

.)f tnoe Foxbit?

Thtc. second query is -t problem because it is a sentence fralgment where a full

sentence is wanted. A special mechanism is needed to expand the second query

into ftill form for processing, with complic~ations for a parsing scheme.

AQF is unusual in that it has no problem with elliptical qucries ait all.

Because AQF query processing primarily is looking for rolptions, fields, and

value s, sentence fragments present no more iifirulty than full sentences.

Furthermore, the break down of intermediate queries into clauses makes

ellipsis transparent at that stage of processing. No new algorithms are

needed.

3.5ACCESS PATH (IENERATION

Pass 2 of AQF generates a target data access path from a resolved

intermediate query. This is done by mapping each field reference in the

intermediate query into am item in the target data base, deriving an access

ce,-quence for each item, and then merging these to get the semantic dependence

between referenced data items. The process amounts to imposing the semantic

3-5

relationships defined in a logical data model onto target data.

S.'. Target Data Linkage

AQF assumes that target data is organized into various types of records.

These may be data aggregations of arbitrary type, but usually will be

'ontituous allocation of data storage with data items of different types

defined to begin at various offsets within a record. Extraordinary record

types, such as ones involving non-contiguous allocations or overlapping

allocations, must be handled by inclusion of special procedures in the AQF

access subroutines, which define access linkages specific to a target data

base.

The simplest target data linkage is the trivial one when two dependent

data items occur in the same record type. In general, however, data will be

in different record types not even directly linked, so that to get from one

item to another may be fairly complex; this may involve scanning of records

sequentially, follow'ng various kinds of pointers and list links, hashing

secondary keys, or perhaps tracing some highly exotic linkage unique to given

a rge*ttav bases. For example, the linkage between data in two different

Ir t brists may :onsist of extracting a key value from one data base and

tran, form-ng it to an analogous key value in the other.

Thore i3 considprable flexibility in defining data linkages for a

parti'-ulqr Aq, irp! ic-ation. Not all target data base links of course have to

b- a known to AQF. In addition, data base links do not even have to

r~f)rm : -iy to n relational hierarchy. For example, instead of following

t.L c~or :path betwen two points in access space, one can insert a detour,

w'.ih I -..'y nvo!v, dta rot encompassed by a logical model or, for that matter,

v-rtia .,It' rot -ven in a target ,Iata base. This is useful for report

-, .r'atn,, ',Asoritol telow in section 3.5.

T -6

PaSO., I expind!; fiell ri~ane ref-rerccs ri a resolIved intermedijate query
0 ~beforeo 'ocuking them Up. Thin serve.- mairily to rsimpl~fy a proble--m in parsing

4,d I & d ec~ where (,, r t - i n wa rio!: have t, s - blIy !tmhb _guous us3ag-e; for

PxaMp'I,-, tho wa H! "MAX-,I!I'" in "MIAX*-12M' LEiN(2',11ii soul I i tner be actualliy part

of ai .iw-w _,r.,!;,1 ri a nm P o r be t heo F sp-ci f i -vt i o n r)f at fun (.t ion to- b e a Fp! i ed

to a- fi~ I (ll I eAi "LFN' ." TI ;m'IIat t-- zea I dI haivf 1)(en a Idressed e arlie r in

Pass I sa i sarhiV'uatiozi problem, but it is easier to deal with r.Pass 2

where,)nor~io n target daita base mapping is avtailable.

f"r'r unction spec ificatlorms, AQF uses a special sub-key

t i bl n the i xv ns on of field names. in order to identify contexts when

cet nwork .. tie '- nt o to) select one of several similarly named

fii~t) pro'-so Tr'' a is a. more- complic-ated situation than the case of

'usc -ti i'ns bo- 'eip it generally involves an aditional target data item and

promou, -J: 'Th ppropriate links to it. Sub -keys are helpful to define,

howeve'tr, * .- ,v sr m01 ify aI query language grammar.

1 ndexeli A-iesr'

lrit-xing aprpli.-s only to tne start of a datq access sequence when a

ope l fi val u- has been gi4ven for an indexed field, identifiable through an

A F ta efir -_ob f-ilds. When indexed access is possible on a field, then

that nc (n-z or td by !,Ass 2 to start an access path; otherwise, AQF

g* !ntar't- -t an-oc.' rse,:uenre for the, field in the noirmal way. Only one- use of

:1 ~ ~ "i'-eo l owe-d per access Path.

Au-t(ni-:'.n,- rteho c mc t~o be, Fuppl i to ','-F as part, of an indexing

ad":~ "~. . . f;J - *- ai target-t iata in~e .naseq wh-ere an index

.;' n a at tr r, - r-->1rag re,-orl type,, rinti thu:s no' at the stairt

- ,~'c . -~ ~.. .- ri'x iaccess 3 treated, orfmrely ainother kind of

i n tr I.~ -i' ata i n ke ab r o u n a s.

<. . 4 s/pecial Access Methods

AQF refers to target data in terms of a given record number of a given

record type plus a variable offset displacement for dealing with arrays of

values. All special access methods are encoded in the AQF linkage subroutines

,Fz 2TR, "Lf:-,, which take a current instance of a target data base record

qnd a Iinkajg c type as arguments and returns a record number and array

lisplacement value for the record type linked to. An AQF record access

subroutine tailored for a target data (ACCESS) base serves to read in a

part; ula r r1--cord instance given its number and type.

Al airray iata must have array limits and array element sizes defined in

1ink. proeedures. Text data, such as a comment field in a target data

recort, is best treated as a special case of array data with array element

sizp qua to somp fixed output line size. This, however, permits no output

buffering and no formatting to avoid breaking up of words across output lines.

1A7 A BAr'E - EARCHING

The AF target data base search procedure in pass 3 is comparable in

:omplexity to the AOF parsing algorithm. it is probably the most important

-omponent in AQF because it had to be developed before anything else could

work. The search procedure is responsible for the bookkeeping that underlies

the correlation of data from different places (possibly different data bases)

and the maintenance of a context for interpreting co-reference.

Tn pas.s search algori thm keeps track of matching record instances for

l ,.., a,,,,ses3 s uonce by saving them in lists according to data record type

,nd -. 'ton r-foronced through. A record instance is added to a list when it

m~~~~t -sa hsrb condition on an access path, and it is deleted if it fails to

mat hanrt' - : earqh condition. Deletion of a record instance from a list may

r'uir, ,puroir "f -ii' semantic dependent record instances from other lists;

or thi.- r-',:en, r, cor] instances are also linked across lists to retain

informotion -tbout their sccss squtence reatIonships.

).4.1 Pattern Matching

AQF has a special pattern match i ng procedure for string data. It

irnplments mat.hin c of optional substrings, of initial substrings only, and of

alternative patterns against data items in a target data base. This serves

prim-irily to make retrieval on classes of strings convenient, but can also be

appl i d to search for occurrences of words in text fields of target data

records. The latter capability would be useful for target data bases where

comment" fields of free format text tend to contain more information than the

highly formatted portions of data records. This seems to be a fruitful area

for further development.

3.4.2 Purging Precedure

The AQF purging procedure in pass 3 makes it possible for data base

searches to be directed at results of preceding searches. The procedure was

originally implemented to let search conditions on one branch of a merged

access path further restrict the subsets of record instances matched for an

access sequence previously followed. This was needed to handle what is

essentially the co-reference problem within a single query; it also proved

applicable to the problem of co-reference across queries.

-n a successful AQF search, a matching record instance must be found for

each point along a data access sequence. Different parts of a query, however,

ma, refer to the same record instance, in effect applying multiple search

-onditlons on it. If a second search condition eliminates a record instance

Iron censi erat ion, then it also eliminates all other record instances related

to it '-on. the Inta access sequence originally matching and bringing them

tacther. This is because record instances are not retrieved individually but

alwayc as pairt of i semantically dependent set of record instances. In

,effect, , a.:h data ,ccess sequence defines a relational data n-tuple that has

-9

haoSof' AQI' mantins the internal links necessary to find all those

cmtc1ly dep%2ndeit r.Ccord instances collected ril1o ng a, da ta access

sequonce. This is updated with each new record instance mnatched; upon. the

deletion of ai record instance, rill record instances related to it will be

pur,,.(-i, aind the itrn Links re--vised, accordingly. The entire operation is

completely invisiblp outside of pass

M ~ultiples of a Record Type

The o c rrence of one-to-many data access l inks in a merged access

sequene s- Ihtly ccrapl icates pass ~.Because AQF searches are dc)th-first

ilorg-a: 'iccess sequenc -, it is necessary to back up along a sequence to 'Look

for poa.sible mult riest o!f : record type aifter a search fails or successfully

reaches th- end of the ,access sequence. Furthermore, multiple record

nstances that meet search conditions must be saved along with internal links

for dealing, with co-re'ference.

A' treat : multiple record instances as each corresponding to separate

relrtiorr a! Jata r-tuples for an access sequence. As long as any one of the

multipiesm _'-s -arch conditions, then the sequence can be satisfied. The

p :ss pi-1-nrocedure keeps track of multiples collected at each point of an

access sequence to Iptn rmine when all have failed to match and to initiate a

purae 01 3~~emarit ;--,iy depenident record instances then.

F, r C ,nulinr va] ins stored in arrays are handled in AQE as a

oPr-'l, Ln -nuti This involves listing the same record instance more

than or,, for ait noint in aqot access sequence, but with different array

,I solanc monts to te!nti'y 4nli .viltl array elements. Maintenance of record

__i n -'~ as ian 1e r, w I he as i n the case o f no rmal mul ti ples.

3.5 REPORT GENERATION

The internal links established by Pass 3 for retrieved record instances

serve as the basis for report generation in Pass 4. The idea is to display a

table of selected data items from record inotances matched along a data access

sequence, looking at it as defining a kind of relational data n-tuple. Ttems

are selected for display either by being explicitly asked for in a query or

implicitly from mandatory fields that have to appear in a response to make it

interpretable. Displays will be generated for each data access sequence

retrieving record instances with an explicitly requested field, until all such

fields have been taken care of.

Report generation comprises the largest amount of code in any of the

passes of AQF. it provides a flexible way of bringing data from diverse

sources together in the manner of data manipulation with a relational

algebraic language. Queries of a yes/no or how-many type give the AQF user

the additional option of ascertaining the existence or extent of retrieved

data before producing a display. Queries specifying no fields at all have

special significance; they are by convention interpreted by AQF as meta-

%ueries requesting on'ine documentation.

• . Mandatory Fields

A straight dump of data requested in a query often fails to provide

,-nough information for proper interpretation. For example, asking for the

,,,{ F:OVIE- INTERCEPTORS" should strictly yield a list of numbers, a

situt ehaving the scores for baseball games without knowing the teams

playLr g. o make output more meaningful, AQF puts t'ree kinds of mandatory

fiel nt ' splays besides explicitly requested data:

Iri.ary k'ys for target data records, since these can uniquely

identify data items.

3-11

2. special formatting used to separate and highlight display tables,

inserted as "constant" data items.

3. informational data of general interest.

Primary keys are always put into a display; the other two kinds of

mandatory fields are included depending on how specific a query is about the

data items to be retrieved by a query. All mandatory fields and the level of

specificity at which they apply have to be identified in the mandatory fields

table for a given application.

3.5.2 Display Headings

To help a user read AQF displays, two types of headings are produced.

The first consists of column headings for retrieved data items taken directly

from field specifications in an intermediate query. The second consists of

labeling columns accord to units of measurement for numerical data; this units

information is stored in each of the tables where target data items are

defined: the field name correspondence table, the sub-key table, and the

mandatory fields table.

3.5.3 Virtual Fields

Target data encoded in exotic ways may not be immediately displayable;

for example, a bit encoding of color. To prepare this information for

display, it is necessary to convert such encoded data first into a string or

other more readily interpretable format. AQF accomplishes this by allowing

enceded data to be designated as virtual fields, marked by having negative

offsets in a target data record type. These virtual fields are computed as on

the fly through a special AQF entry point (COMPUT) to call generation

procedures defined for given target data bases.

3-1 A

Virtual fields included in the mandatory fields table can be used as a

device for report generation. The procedure for computing a virtual field can

be employed to produce arbitrary output based on the contents of a target data

record instance. Various kinds of output formatting can be obtained in this

way, including the delineation and highlighting of data items.

3.5.4 Arithmetic

AQF report generation in Pass 4 can be set up to compute various

functions on a numerical data field and to display the results. The

particular functions executable for a given AQF application are defined

through special AQF entry points (DETFNC, COLFNC, and PRTFNC). The AQF

demonstration systems currently can compute sum, total, minimum, and maximum;

other similar functions can be defined as well. The problem of more general

arithmetic capabilities on several fields at a time is discussed in Section

6.2.2.

3.5.5 Meta-Queries

When a query makes no reference to any field in a relational hierarchy,

various different responses are possible. One possibility is to simply print

a diagnostic message and to disregard the query, but this is rather obtuse,

given that the query is intelligible. A second possibility is to dump key

portions of all data accessible to the user, but this is probably not a good

idea for data bases of any significant size. A third possibility, which is

implemented in AQF, is to interpret the query as a meta-query about the

structure of a data base rather than about its content; this is a convenient

way of providing online data base documentation.

ACF stores prepared text describing each of the relations in a relational

hierarchy logical model. The description of a relation is displayed when an

ntermediqte query marks that relation with a "(?)" but makes no reference to

any field. The text descriptions are entered at the time that a relational

3-13

hierarchy is set up as a logical data model. AQF provides a special input

program to convert text from an ASCII input file into the proper form for

retrieval and display.

3.6 SORTING

AQF implements sorting only on fields of the output display produced by

Pass 4. This is done in Pass 5 of AQF, which serves as the output module for

AQF; Pass 5 calls an AQF sort subroutine employing a standard partition-

exchange sort algorithm. The incorporation of sorting in a separate pass lets

AQF sort an output display entirely within an internal buffer. It is assumed

that such displays will never be much larger than the size of a typical CRT

screen of a user terminal.

Sort specifications are compiled automatically by AQF from a user's

query. Sorts may be in ascending or descending order; output fields are

sorted either alphabetically or numerically depending on their original data

type; and two levels of sort field priority are defined, allowing for simple

grouping of output data. Sorting can be specified separately for the

individual segments of output produced for each data access sequence derived

for a query.

3-14

4. COMPARISONS

AQF provides an extensive range of capabilities for data base access and

in particular is useful for correlation of data from different data bases.

Its actual value as a part of an overall interactive information system

depends on a variety of factors:

o The degree of training expected of users.

o The predictability of information requests by users.

o The complexity and size of target data structures.

o The type of computer hardware available.

How these factors affect the applicability of AQF in a given system is best

seen by looking at various alternatives to AQF and weighing the relative

advantages and disadvantages. This section will look at three main categories

of interactive systems for comparison: menu-driver query systems; formal

language systems, including most relational data base systems; and natural

language systems of various types.

4.1 MENU-DRIVEN SYSTEMS

In a menu-driven system, the user selects data for display from various

fixed options. Typically this is set up with several levels of options, where

selection made at higher levels determine the availability of selections at

lower levels. The scheme is straightforward to implement; and it is easy to

use, especially in conjunction with graphic input aids like the light pen. It

is probably the best approach to take when a data base has a fairly simple

structure and when queries are predictable.

4-1

The menu-driven system, however, tends to be inflexible. Major changes

to a data base or to the repertory of allowable queries and associated

responses all require reprogramming of the system. This approach does not

lend itself to applications where information needs are evolving or where

access to data is on an exploratory basis.

The entering of a query rough a menu can also be inconvenient at times.

Although the number of manual operations to enter a query is reduced with

menus, the user is often forced to look through a great deal of irrelevant

data in order to make a selection. The actual selection process itself can be

highly unnatural if a user has to repeat a series of selections many times for

sequence of queries different only in a single detail.

Another difficulty with menu-driven systems is at the output end. Such

systems tend to have only a few ways of displaying information, and this may

consist of showing the contents of an entire target data record even though

most of that data is of no interest to the user. With fixed displays, there

is typically no easy way of correlating and comparing values across data

records.

in general, classical menu-drj.rCx systems are most useful when data is to

be processed on a production line basis or when the number of menu options is

small. In any kind of analytical situation where the structure of data is

complex too, a user needs much more flexibility in looking at data, and the

support capabilities of something like AQF become quite attractive. Relying

solely on menus also becomes impractical as a data base grows to the size

where there are too many retrieval keys to list in menu displays.

One interesting possibility here is to combine AQF with a menu-driven

approach. Instead of a natural language interface as implemented in Pass 0 of

AQF, one can substitute a menu-driven front-end with provisions for manually

entering retrieval keys too numerous to list. This would combine the data

base modeling, data correlation, and report generation capabilities of AQF

4-2

with the simplicity of a menu interface. It should perhaps be noted that

menus could be into much more powerful query entry tool with two dimension

displays and color graphics.

4.2 FORMAL LANGUAGE SYSTEMS

Where flexible access to online data is needed, formal query language

systems are usually implemented. These allow users to express information

requests in a highly logical language that is well-defined syntactically and

semantically. The most prominent example of these are the retrieval languages

designed for commercial data base management systems and the various formal

user interfaces designed for relational data base systems (c.f. [1][2]).

All formal query language systems require that the user learn an

artificial language, although in some case it may masquerade as being natural

by having words in place of mathematical or logical notation. This extra

demand on the user is usually justified on two main grounds: first, that a

well designed artificial language is much easier to process by computer than a

natural language; and second, that the artificial language would be more

precise. If neither were so, then there would hardly be any need of an

artificial language at all.

There are, however, problems with formal query languages in that they

closely resemble programming languages in their usage. Accordingly, formal

query languages are most suitable for persons who can readily learn a

programming language, meaning that most people will not take to a formal query

language quickly. This difficulty is aggravated by the fact that formal query

languages tend to be arbitrary in definition anyway and will often be somewhat

inconsistent from one system to the next.

Implementation problems also arise with formal query languages. Almost

all such languages are predicated on relatively simple logical models of data

that seldom correspond to the complexity of actual target data bases. Full

4-3

use of these languages requires that existing data be reformatted to

correspond to how their logical data models look; for example, a user might

hav, to convert an entire data base into a relational representation. This

makes a query language much less useful than it might be.

The development of AQF addresses most of the issues raised here. The AQF

language is very natural and easy for non-programmers to learn, but yet it can

be processed readily enough even on medium-scale hardware. The biggest

advantage of AQF, though, is with large existing data bases of complex

structure because AQF can work with such data without any prior reformatting.

This makes it possible to develop a query capability for a target data base

without disrupting any data processing applications already supported by it.

4.3 NATURAL LANGUAGE SYSTEMS

There are two types of natural language systems that need to be

considered here: those that focus on natural language as a means of

exhibiting intelligent machine behavior, and those that look at natural

language usage as a source of ideas on how to improve communication between

computers and users. AQF is of the latter type.

4.3.1 Machine Intelligence

Intelligent natural language systems, of which SHRDLU [9] is probably the

best known, seek to understand language in the ways that human beings seem to

understand it. This encompasses such problems as recognizing all the

implications of a given sentence in a given context, filling in details that

are expected to be understood, and devising effective procedures for dealing

with pathological examples of language. These problems almost always have to

be approached through the compilation of large bodies of online world

knowledge and elaborate inference schemes.

4-4I

Such technology is as yet not mature enough to build practical software

with. More significantly, however, it does not really appear necessary when

the goal is only to be able to request certain that items of data be retrieved

from a data base. So instead of aiming for intelligent behavior, AQF seeks to

develop simple, reliable tools to support interactive access to data bases at

reasonable cost.

For such reasons, AQF currently supports no general inference capability

and deals with no world knowledge other than the information in target data

bases or in a logical data model. These remain possibilities for the future.

Inferential techniques will be practical for query access facilities when they

can be made fast enough for interactive operation; employment of extensive

world knowledge to support general query access will be feasible when there is

a systematic way of constructing world models applicable to particular target

data bases.

4.3.2 Technology Transfer Systems

In the past few years, a practical approach to building natural language

systems has evolved. The premises of this approach are that a large body of

proven technology exists for natural language processing and that much of the

technology can be directly applied to improve the capabilities of software for

applications like interactive data base access. Work along these lines has

been promising (c.f. Section 1.2.2), leading to scores of efforts to develop

practical natural language systems of all kinds.

In the area of data base access, most systems including AQF take the view

that it does not really take much more trouble to go from a formal query

language to a reasonably natural query language. The problems of parsing and

interpreting natural language are fairly well understood, and if solutions do

not yet exist for all of them, they can at least be worked around in the

special case of data base access. Any extra overhead involved in processing

natural language queries in any event turns out to be relatively insignificant

4-5

compared to the normal overhead of searching for and retrieving items from a

target data base.

Natural language access based entirely on extension of formal query

language processing capabilities, however, inherits the problem of

applicability to existing target data bases. Their usefulness is diminished

when they require data to be converted into a special format like relational

data structures. Where target data is not already in a convenient format for

natural language access, the approach of AQF is helpful because its data base

mapping capability eliminates the need for any conversion.

The point to note again here is that AQF is not simply a natural language

query processor; the natural language front end of AQF can easily be replaced

by something altogether different. The particular virtue of AQF is that

natural language is well-integrated with versatile data base access

capabilities. This makes AQF most useful in situations where data base access

is actually a serious problem instead of merely being a little inconvenient.

4-6

A4; vIi aV- for i str 'but ion: in th.- form cf FhA sourre fi es.

The Pse (- %n thbe r b e in co r po r at *e I in t. i n. ~x I s t n , 4r ri as,- . ner f:ac- tor :

employed --s tKH nucleus cf Lopratr ' j-i ry syi3*om. s s,- c' r, w: cu r i

the basic roced',rt. irnvc .ed : r. so, t rig i. . for ose frcon it.- di . t rituti o -r.

source; a moru compl ete descrt ption with~ examplf-s p-.&v(er. in tl.e7 A.E Ther' s

Marnual .

The bast<- steps to AQF setup ire as fol lows:

o refine a IogicalI model: f or target iata of irnt-rest. This is

relational hierarchy.

o Define target data record linkages pertinent to the logical -nodel..

This may involve some programming.

o Compile a query language vocabulary for the logical model.

o implement any special target data access methods.

o implement any special data type conversions.

o Define manda tory fields for report generation.

o -ompile and link AQF from supplied command files.

r,)st -fhe worki 'ere nvolves setting up various tables for AQF. :n AQF, all

thbl-3 arc- produced from source text files by speciel support programs, one

for earch type of tal.the AQE query lainguage grammar and an AQF dictionary

are treatalI ras tables.

.~nv r rY , rirms inF. of AC;F for a target data base is restricted to

Vr o!fe ry iont i n ei f ic AQF modul es.

Thfi rs , i or-i ty i. for ai systm r,!nqna~er to de~termine what data AQF

ShoudA work " i;. h i., is, di f by etne rait i ne a- re la9t ionalI h ie rarchy a s a

~oia. mode' of +:,rrge data ise for A'. 'he model would include all

re.itonsd ie for the, A F %ppl ication, their hierarchical ordering, and
- ~ ~ ~ ') th-m ,)fr-i~~i~ 1 f r'-11,' ions need not correspond to

oLt houl b- -it '("A-~~i omputaible, from data items.

no:'ni I~c. o' h logic-al model.

Ie i' n +m f a Ig o r I <? for AF departs from standard

r, ~ at ras ,s 'n -4 - n that th(e names of relations must come before

nhm.'v e f E the choice of relations and their

r % bxrrry -- d "nn y the prior selection of the relation

P~r-s frh ir' r~ q s- Ioon 4 s on I ngui stic grounds ; a wo rd is

r a .' r >wi + if it oru fa-i r ly ofte asamdfier in natural

- ~~' ni'ae .cn - tfarget iai tems. The ordering of relation name

- ~ ~ ~ ~ ~ ,n 'h .''Pscn a~ en itfines the hierarchical ordering of relations,

-ri~~ r:- -'*-'~ to thia h ierairrhy at the lowest relation name in a

W71 W1o r.- in res o mrI f y ine the- f ield .

r, -, r jn r O d-ther to makc a, givt-n data designation word

i n +~ -i vir ino pr of r, field1 name. This depends on the

I i + w& ;o y, i I ho -idvan tagepous to have as many

- h-~se he F-reater %rtir-ulqtion of a logical model

f '... ... 'o n rpor ,-nration. This, however, has to be

- .. .'a-i.itrr-r-'%lionr- i.o m(-nns longer target data

r,, re'- -i r--r in Y_-s'once Ist! to m intain.

The relation names for a hierarchy go into the AQ relation name table;

this also specifies the immediate ancestor relation name for each entry.

Descriptions of each relation go into a separate AQF relation documentation

table, which supplie- tht- text to be displayed when a meta-query about the

stru-ture of i da&ta base is submitted by a user.

.1.2 Link-ges

Once a relational hierarchy is defined as a logical model for AQF, it has

to be mapped into target data bases. The first step here is to define a field

name correspondence table showing the location of data items for fields in

terms of the target data record types containing them, their data type, and

their position in a record. If there are any virtual fields not corresponding

to any data item, then these should be noted in the table with a negative

offset position for some record type, and code to compute this field should be

inserted in the AQF virtual fields subroutine.

With the field correspondences, each field can be identified with data

items at a point in access space. The next step is to define the access

linkages that wi tie these items togethe - . The goal is to have a set of

links such that for each data item, there is a data access sequence composed

of links that satisfy two criteria:

o The relation coordinates of an access sequence for a data item

correspond to moving from a top level of a relational hierarchy down to

the relation containing the field designating the item.

o The rfecord type coordinates correspond to a chain of accesses starting

from a directly accessible record type (e.g. by sequential or indexed

acess) down to the record type for the data item.

n~rcrofnPf between relations are defined in the inter-relation link table:

1 inks , st ay: n ' no :tion, in the initra-rel-ition link table.

Code definlit-, tl- uouisn should go into the AQF linkage procedures

(FI~~fI ~7, ?:.LTPd . :V.- ion, allI indexed fields should be identified in the

AQF tabL for th!o mA !i t he inde~xing metho it; :ild(e(i to tile AQF indexed-access

v;. lu,-r:, 1 ing~Uage 'raa dfnu h yntactic function words

and "s, wh ih srk k. the skleton of natural language

hi:-x. >-ontent wo,,rd s f i query lngpua,,g e, which refer t o a

-11.' 'a at, ba se, mut be dIefined- in a dictionary table for a

+ ,ita ba s e. TnCole tis f onte nt words will depend

y tho -x~peIted users of !in A"-' system.

The r'on, r'. rul- for vocabulary is tc- :i Il&u-c all words that can be

in'erreood as being a relation namn, pnrt cf -, field name, or an explicit

literal value associated with some fil. The-se are entered into an AQF

dictionary by assigning them to one of ust over a dozen possible parts of

speech and establishing their relationpl hierarchy refert-nt2. Where there is

possible anbiguity over refe:-rents, AQF allows , for definition of a word with a

special part of speech, which is processed so that Tass 2 will take on the

respons iblity of establishing the referent.

SPECIAL ACCES0S PROCEDURES

mrodlularity, all AQF target data base access is through a single

inc A2C.. ,which accepts at record type tind rrcord number as input

argumnts to iniicae a particular target datal record instance and returns

ha "corl instance in a given buff-v . This procedure cannot be supplied

wi'- i tin~ri~l., 1A istribution acgebecause it must be- designed for the

ire ta bqas ind ts dat-i base Yninagement system. Writing the record

c,,,~ sb't: on he s im p if- or compl ex d epo n(.i ng on whether the

organization of the target data base has structures corresponding closely with

the nominal record types recognized by AQF. Some remapping of data items may

be necessary.

In addition to the record access subroutine itself, the system manager

setting up AQF is responsible for supplying two special subroutines (INACCS,

DEACCS) serving to attach AQF to a target data base and to detach it. Again,

these subroutines may be trivial or complex depending on the target data base.

A set of access procedures designed for data bases consisting of FORTRAN

sequential-access and direct-access files is available with AQF.

5.4 TARGET DATA TYPES

AQF currently recognizes only three data types: integers, floating point

numbers, and character strings, with integers and floating point numbers being

either single- or double-precision. Other data types in a target data base

must be converted using AQF virtual field definitions and conversion code

called through a special AQF entry point (COMPUT). This is the responsibility

of the system manager setting up an AQF system.

Users may deal with data only of the types recognized by AQF, whether

this be actual or virtual data. Addition of other data types is possible, but

wouli involve significant changes of code in AQF passes 3, 4, and 5. This is

because the detailed characteristics of a data type must be taken into account

when matching target items, formatting them for display, and sorting on them.

%.r MANDATORY FlELD2

The notion of mandatory fields is the basis for AQF report generation.

The system manager setting up AQF must establish the various key fields,

-Uibels, ani rVfaui t output fields that are to go into AQF output to make it

more redable and informative. This is accomplished by putting mandatory

fio sd appropri-ite points n ong an access sequence o that they will be

inserted into the relational n-tuples composed by AQF in response to a query.

The coordination of access links with mandatory fields allows for the

tailoring of output displays for users. The choice of access links governs the

kinds of relational n-tuples that can be produced as output; the choice of

mandatory fields governs the type of information appearing in a relational n-

tuple, exclusive of that specifically requested by a query. The access

sequence for requested data item thus establishes an associated output format.

A system manager has flexibility in defining output formats because it is

possible to define more than one distinct access sequence following the same

target data base record linkages. This can be done by defining unnamed

invisible relations in an access space that map into the same part of a target

data base as a named relation. The existence of such parallel relations allow

for the generation of data access sequences that are completely equivalent

except for the mandatory fields associated with them.

5-6

6. FURTHER WORK

The current AQF software package offers a broad range of services to the
non-expert computer requiring interactive access to online data. AQF as it

stands now, howe ver, has much potential for continued evolution. The basic

multi-pass frumnework of the original AQF demonstration system has proved to be

extremely workable, lending itself readily to the incorporation of many new

ideas.

This section will examine AQF not as a finished product but as a concept

of much wider scope. Various improvements and extensions of AQF will be

consilered, all being practical undertakings. The important question to be

raised here is really not whether something can be done, but whether it ought

to be done in light of user information needs.

6. 1 IMPROVEMENTS

There are a number of straightforward ways to enhance present

capabilities without having to develop any major new algorithms. These would

be areas of continuing work.

6.1.1 Grammar Improvement

The current AQF query language grammar consists of about 500 rules and

definitions describing a small subset of English. It has been developed

extensively through experimentation starting with the original AQF effort, but

more work remains to be done to extend the syntax handled by it. Rule storage

space in the current implementation of AQF could easily handle another 200

rules, so that there should be no problem with room.

The AQF parser plus grammar needs to be exercised by many more

experimental users since the acquisition of any kind of language inevitably

6-1

must come through exposure to many different examples. Persons unfamiliar

with AQF are very helpful in coming up with valid queries that are

rejected by AQF. In most cases, these point out areas where the basic 4QF

query language grammar could stand improvement.

6.1.2 Code Optimization

Because AQF is experimental, its implementation was through a robust

programming approach that reduced the probability of errors, but probably

resulted in inefficient code. For example, a serious problem in this respect

for the most recent AQF demonstration system is with target data record

buffers; at present, only one buffer is available, forcing much rereading of

data during data searching involving several data record types. A better

buffer area management procedure would probably be helpful here.

Other aspects of AQF where optimization would be appropriate are in

access path generation, data conversion and packing, and output formatting.

Data base search and retrieval might also be open to improvement, but this is

probably something that cannot be improved upon within AQF alone. Output

formatting is a good possibility for optimization simply because it is so

large now.

6.1.3 Error Reporting

The diagnostic output produced by AQF in response to an uninterpretable

query is currently at a primitive level. The AQF query processor for example

could do more to indicate why a query could not be parsed; an error message

might show how far an analysis got and what unknown words appeared. Similar

improvements in error messages could be made in the other AQF passes for

v'irious overflow conditions.

6-2

6.2 EXTENSIONS

Although the current AQF demonstration running under VMS compatibility

mode is already fairly large, there is still room for the addition of a few

major modules. Which additions to incorporate, however, has to be established

according to need.

6.2.1 Spelling Correction

Because spelling or typographical errors tend to be frequent in keyboard

entry of text, most natural language systems incorporate some capability for

their correction. This usually is called upon to process an unrecognizable

word, with the typical procedure being to look the word up a table to find

what might have been meant and then to present these possibilities for the

user to respond to. Some research on how to do this has been carried out

under the AQF effort, but nothing yet along these lines has been integrated

into the AQF package.

For AQF spelling and typographical correction, the approach would be to

implement a fairly simple scheme to catch sone of the most common problems;

letter transposition and wrong choice vowels, for example. AQF wouli maintain

an external file of target data reference words and English syntactic function

words that are likely to be misspelled. This would be applied both for

automatic correction and for corrections where the user has to choose between

possibilities.

A possible scheme for AQF would be to index words in the misspellings

file by their consonant occurrences irrespective of ordering in a word.

Candidate corrections obtained from this indexing for a misspelling could then

be filtered further according to length, vowel occurrences, and other measures

of similarity with the misspelling. This sort of procedure would be

incorporated in the lexical analysis part of the AQF pass 0.

6-3

6.2.2 General Arithmetic

Systems like REL [7] allow queries to specify computations on different

data fields of a logical model. Such a capability may be useful for AQF; it

could be implemented as extension of the arithmetic function computation

already in AQF. AQF would maintain special registers for carrying out these

operations and allow these registers to be referenced in queries as virtual

data base fields. More elaborate capabilities than this would probably be

unnecessary in AQF, given that AQF is not intended as a kind of interactive

programming language.

6.2.3 Arrays

The current AQF scheme for handling arrays of data elements is awkward

for larger arrays and for multi-dimensional arrays. This could be remedied by

building into AQF a specific array bounds handling mechanism, which would

allow references not only to one array element at a time but also to an entire

range of array elements. Unformatted text data fields could also be handled

better with this capability.

The main changes to AQF would be in the way that matching target data

record instances are maintained and in the report generation and output

procedures. AQF record linkage procedures (FIRSTR, MLTPSR) would be employed

much tY'e same way as before. The overall scheme would remain fairly simple,

although this would probably provide more array handling capabilities than

found in any other natural language data base access facilities.

6.2.4 Fuzzy Matching

Internal arithmetic operations on target data in AQF now is entirely with

fixed-point numbers, and matching for equality of values must be exact. This,

however, will probably be inconvenient or even unacceptable in many data

access applications and especially so where unit conversions or other

6-4

41

computations introduce round-off errors. It would be helpful for AQF to allow

for fuzzy matching of numerical values within some range of tolerance.

The easiest approach to fuzzy matching in AQF would be to extend its

notion of data type to include a range of tolerance expressed as a percentage.

This could be implemented with additional code in AQF Pass 3 and with a few

minor changes in AQF data structures and mapping tables. This could be done

without having to do anything else wi+h the rest of AQF.

6.2.5 Negation

AQF currently does not permit negation in queries, but this could be

added in a fairly straightforward way. There are only two possibilities where

negation might be applied to intermediate queries: on numerical values in

query markers of the form "(n!)" and on comparison operators relating a value

to a field. The first case would be best handled by encoding query counts

differently to include a comparison specification also; the second would

require only minor changes in Pass 3 field matching. Most of the work

involved in handling negation would be in extending the basic AQF query

language grammar.

6.2.6 Macro Expansion

Interest has been expressed in having AQF support a "macro" string

expansion capability comparable to that in REL, where the user can specify

that occurrences of a given "macro" string in a query be interpreted as an

expanded definition string. The definition string usually would include dummy

parameters that would be replaced by matching strings associated with the

occurrences of the "macro" string in a query. In this way, users could

develop a personal form of shorthand for queries.

6-5

in AQF, such a capability would be difficult to duplicate because the AQF

parser by itself is not as powerful as the REL parser in input string

manipulation. A possibility for AQF is to define a macro expansion in terms

of dependent clauses to be inserted into an intermediate query during the

rewriting phase of Pass 0. This, however, would require extensive work, and

it is unclear how much use it would be.

6-6

7. CONCLUSION

AQF at present is in a situation like the early days of compilers. The

existence of AQF at all shows what is actually possible to accomplish with

available resources and points in a direction for future work. It should

ultimately be possible to build a much better data base query facility than

the current AQF implementation, but AQF in the meantime will have helped to

clear the way by sharpening issues pertinent to developing more powerful query

facilities.

The AQF software package is particularly workable for both applications

and development because of its modularity. It can readily be made to fit on

processors with limited address space, and it is easy to change. The basic

software has been run by a variety of users since the initial operation of the

AQT demonstration system two years ago. The FORTRAN source for this software

is available for experimental use.

7.1 CAPABILITIES

The design of AQF aims at usability through simplicity. Although AQF

breaks no new ground in terms of machine intelligence, it manages to provide a

full range of important capabilities for support of data base access.

7.1.1 Natural Language

Natural language in AQF is a method to make access to a data base as

transparent as possible. It is not supposed to eliminate user training

entirely; instead, it allows a user to learn a query language that is

analogous to what the user is already familiar with. This makes it easier to

describe ;he kinds of restrictions for communication with AQF. In real life,

people seem to know already how to make allowances in talking with persons

lacking a full -rasp of language, if such shortcomings themselves are natural

7-1

in some sense.

In contrast to most natural language systems, AQF query processing avoids

the problem of trying to recognize sentences. It focuses more on applying the

various conventions about linguistic usage that allows someone to designate an

item of data and its relationship to other data. This permits query

processing to be more simple and flexible in dealing with imput. Syntactic

analysis is fast enough to be negligible in an information request, almost

always in about a second at a user's terminal on a time-shared system.

7.1.2 Multiple Data Bases

The main advantage of AQF is its applicability to existing data. It

adapts itself to target data bases, rather than forcing data to take certain

formats or to be organized under specific data base management systems. AQF

is particularly useful when target data is distributed over several different

data bases, each with dissimilar user interfaces. The natural language

capability of AQF here would provide a convenient common data access language.

More significantly, however, AQF offers the capability of generating

information displays correlating data from different data bases. This

supports more effective analysis of online data as well as improving overall

access to existing data bases by analysts who may be non-expert computer

users. No other natural language systems implements such a range of services.

7.1.3 Report Generation

This is perhaps an underrated aspect of information system design.

Although there is great concern about making information requests more

flexible and easier for users, there has been no comparable effort for the

flexible display of data in ways easy to interpret by users. In many cases,

there is a lack of distinction between data as opposed to information needed

by a user.

7-2

-- 7i

The approach in AtF is to avoid the mere dumping of data values request-i

by a user. The semantic dependence of data items is also taken into account

in order to produce coherent output for a specific query. 'nlike most

interactive information systems, AQF output is not restricted to a dozen or so

standard formats.

7.2 USER DEVELOPMENT

The effectiveness of the AQF approach can be assessed only by applying

AQF to actual data bases and letting it serve real users. In this way, one

can see in practice whether capabilities like natural language, relational

data models, table-driven data base access, and automatic report generation

can help anyone out significantly. If AQF does prove to be viable here, then

it can be developed further within a context of real information needs.

A perennial problem with truly new information systems in that they

seldom fit into the information flow patterns of organizations accustomed to

working with greatly limited information processing. The importance of a new

system may in fact ultimately be to alter information flow patterns radically

to improve the overall capabilities of an organization; but this cannot be

accomplished at a single stroke. A system must grow gradually into an

organization so that the organization can develop the necessary procedures to

take full advantage of the system.

The adaptability of AQF works out well in this respect. It permits new

capabilities to be introduced in a fairly inobtrusive way into the

information flow of an organization. There is no need to convert existing

data bases or to acquire special support software or special hardware. It is

possible to try AQF out within an organization without incurring heavy costs.

One interesting possibility here is to implement AQF on a micro-

processor. For example, there are commercially available CRT terminals that

can acccmmodate a 16-bit DEC LSI-11/03 micro-processor, up to 128K bytes of

..

r -- - - . .. ,2_T - .-- _ _

•."m~ry, seril int, rfa~es, and a lui' f' oppy-Jiok Jr ve it a total
r: u! i i, r , . cause R. X-1 1i (-an run on such a micro-processor

system, th prs-nt F"i <RAN version of AQF could immediat1ly be implemented on

the system, qaltho#,h a version wito tighter assembly 1anguage code might be

le. : Iut al of AQF except for target iata base record access

on _ t rm;nal that could be attached to any computer system supporting

current-loop terminal interfaces. To bring AQF up, it would only be necessary

write a target data base access program to run on the host processor and to

communicate with AQF on a satellite terminal processor. The entire operation

of AQ? here could be made completely invisible to the host operating system.

All AQF tables would be maintained at a terminal on a floppy disk, with the

user able to change a logical model by simply inserting another disk.

7.L3 EVALUATION

At the start of the AQF effort, it was intended that an AQF demonstration

system be set up with real data for trial operation by volunteer users,

gnalysts who would ordinarily work with the data. This was to provide the

basis of an operational test of AQF; but because of a variety of reasons

beyond the control of PAR Corporation, neither data nor users were ever

identified, making an operational test impossible. The problem may have

stemmed in part from a curious paradox afflicting natural language systems:

although much lip service is paid to importance of natural language

communication with computers, it is hard to think of practical situations

where it might actually be applied to advantage.

To show the capabilities of AQF despite lack of real user data, it was

necessary to bring up two different AQF demonstration systems with two

different locally generated data bases. These illustrated what was possible

with AQF: in one case, running independent of any data base software; and in

the other, interfacing with a basic data record management facility (RMS-11).

7-4

The AQF software developed for the latter case would also apply to data bases

generated with the SABRES data base management system, which is built on RMS-

11.

The two demonstration systems generated from identical code for the six

passes of AQF show that AQF is insensitive to the organization of target data

bases. Both systems run quite fast in PDP-11 compatibility mode on a VAX-

11/780. Both have been tried during demonstration sessions by various users

with only minor difficulties; in almost all cases, shortcomings identified by

users could be remedied shortly afterward with changes in the basic AQF

grammar or in the six passes of AQF.

7.4 PROSPECTS

Although AQF is not absolutely portable to all computers, its being

written in FORTRAN makes it reasonable to move to mcre different types of

processors than any other natural language system. As online data bases

become more widespread, AQF techniques with or without natural language should

provide a viable option of increasing importance for implementation of

interactive data base access. The only major requirement now is the

willingness of users to experiment with new techniques like that of AQF.

7-5Ii

N.M. Astrhan and r.l. Th'nbrlin. Implementation of a structured

E.nFg*sni query 1:,nuage. C omm. ACM 1', (October, 1'75), pp. 580-588.

i .F. Boyce, D.D. Chamberlin, and W.F. King. Specifying queries as rela-

tional expressions : the SQUARE data sublanguage. Comm. ACM 18

(November, 1 p5 , pp. C-1-627.

E. Codd. A relational model of data for large shared data banks. Comm.

ACM 13 (June, 1970), pp. 377-387-'

C. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing a

natural language interface to compiete data. ACM Transactions on Data-

ba3e Systems 3 (June, 1978), pp. 105-147.

S C. Mah and J. Morris. Advanced Query Techniques for S&T Intelligence.

RADC-TR-62?0, Rome Air Developmont Center, October, 1979.

16] V. Pratt. A linguistics oriented programming language. A.I. Lab Memo.

No. 27", Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, February, 1973.

[7] F. Thompson and B. Thompson. Practical natural language processing: the

REL system as prototype. In Advances in Computers 13, M. Rubinoff and

M.C. Yovits, eds., New York: Academic Press, 1975.

P. Waltz. An English language question answering system for a large

relqtionl dat. base. CACM 21 (July, 1978), pp. 526-5'59.

Whra

-w .. . : -- - 9* . . " - . . ' ' . . " -, - u - - - -- -

q W) T. hi r ',J rde rst t ri n .- t *: ' , ; >t N Y oIk Acud em c

FPres', Q2

MISSION
* Of

Rowe Air Development Center
RAVC ptans and execwtez te,6ealtch, deveeopmen-t, te6t and
seected acqwbsition ptgLOams in suppoh-t o6 Command, Conkot

* CoinmuniLcction, and Intettigence. (C31) activitiez. TechniLcat
and engiZnee.Ling 6uppo'tt wifthin a'lect o techniLca competence

Z6ptov-Lded to ES1) Pkoytam 066ice.6 (PO,6) and o-the't ESV
etemeennts. The pii cizpc technicat miz Lon Lv~eAa.4 e
communication,6, etectkomagnetic guidance and cont't, suit-
'veiftance o (qtound and aek'ozpace object.6, inte~iZqence data
cottection and handLing, in~o'tration sy.6tem technoeogy,
iono~sphe.,tic p'topaqction, .6oLd .6hzate scences~, 2'tkowa~ve
physin and eeectonic keti~abitity, minaianabiJJUty ay~d

* compa4th-itqy.

ATE

